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Abstract
We study the motion of Brownian steppers, which are objects moving
unidirectionally by discrete steps. A single step is composed of two processes.
An activation process describing the random attachment of a fuel molecule is
followed by a conformational change of the stepper, leading to the forward
motion. Whereas activation is given by a Markovian rate process, the forward
motion is defined by a gamma distribution. In this paper we propose a periodic
modulation of the fuel concentration in order to control the random motion of
the stepper. We show that the driving may reduce the fluctuations of the stepper.
Corresponding minima of the diffusion coefficient and maxima of the Péclet
number prove the regularity of the motion.

1. Introduction

For many physicists the term ‘molecular motor’ is associated with a Brownian ratchet. The
latter is a simple model consisting of a particle in a spatially asymmetric time-dependent
potential, subject to friction and thermal noise. This model became popular after Magnasco’s
1993 work [1] and an abundant literature is devoted to the questions of rectified current
(particle’s velocity), thermodynamic efficiency, current reversals and many other intriguing
properties of such systems both in underdamped and in overdamped regimes, under adiabatic
or non-adiabatic modulation conditions, see [2–4] for reviews, and references therein.

However, the majority of real molecular motors powering our cells and their organelles
are not rectifying fluctuations. They are more similar to deterministically working car motors,
whose functioning implies a sequence of well defined processes, which, in an analogy with a
heat engine, are called strokes; see e.g. [5–7]. These motors hardly show any reversal of their
motion and are highly efficient and best suited for performing their well defined simple task.

There is, however, a considerable difference between the method of functioning of
molecular motors [8] and macroscopic ones: due to their microscopic size, the importance of
inertia and masses (being proportional to L3 with L being the size of the system) is negligible
compared to the importance of friction, which, in the Stokes case, is proportional to L itself.
Another difference is that the motor is so tiny that the influence of the thermal agitation of
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Figure 1. One step of the Brownian stepper. The step is induced by the binding of a fuel molecule
X according to a rate process with a rate γ (t) which is proportional to the concentration X (t) of
the fuel molecules. Afterwards the motor molecule undergoes conformational changes, thereby
releasing the used fuel X∗ and advancing by one step length L. These conformational changes take
some time τ which is distributed according to w(τ).

the molecules of the surrounding medium cannot be neglected. Thus, although the strokes
themselves are well defined, we cannot neglect the effects of randomness introduced by their
impacts. These are constructively used by the motors, whose working cycle might include
thermally activated or diffusive steps; here we note that at the scales considered diffusion
(with the typical displacement going as a square root of t) might be a fast process compared to
deterministic sliding, with displacement going as t . Bier coined a description of such a motor
(a simplified model of a two-headed kinesin walking along a biopolymer microtubule) as a
Brownian stepper [9].

The paradigmatic model of a Brownian stepper might be used as a prototype of tiny engines
on the nano-scale. Thus the question of the possibility of controlling the motion of a stepper
can be posed. Such control cannot be easily realized through changing the properties of the
molecule itself. It will be much easier to modulate the properties of the surrounding medium
by changing, for example, the concentrations of some molecules (fuel molecules or special
transmitters), just as adopted in biological prototypes.

This is exactly the mechanism of control we consider in some detail in the present work.
We namely consider the influence of a periodic modulation of the fuel molecule concentration
on the transport properties of the stepper. The transport properties of interest are the mean
velocity v and the effective diffusion coefficient Deff of the molecular motor. The first one
determines the effectiveness of transport,and the second one,describing the spread of the actual
positions in different realizations around the mean, gives us the measure of how accurately this
molecular step motor works. The characteristic measure of this precision is the dimensionless
Péclet number, Pe = Lv/Deff , where L is the length of one step [10].

2. The model

A Brownian stepper is a molecular motor which moves along a track in discrete forward
steps (figure 1). Each step is induced by the consumption of a fuel molecule. This initiation
of a step happens according to a rate process with a rate γ , which is proportional to the
concentration of the fuel molecules. After a step is triggered, the motor molecule performs
some conformational changes before returning to its initial configuration, however having
advanced one step on the track. This sequence of conformational changes takes some random
time τ to perform; the distribution of this stroke time is given by some probability density
function w(τ). We control the motor by periodically modulating the fuel concentration. This
leads to a periodically varying initiation rate γ (t) while the stroke time distribution w(τ) is
assumed to remain unaffected.

The motion of the Brownian stepper can be characterized by the instantaneous mean
velocity v(t) and the instantaneous effective diffusion constant Deff (t). Denoting by N(t) the
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random number of steps performed up to time t , these quantities are defined as

v(t) = L
d

dt
〈N(t)〉 and Deff (t) = L2 d

dt

〈N(t)2〉 − 〈N(t)〉2

2
(1)

where L is the length of one step of the Brownian stepper, which will be set to unity in the
following examples. Due to the periodic modulation of the fuel concentration with period
T = 2π/�, the velocity v(t) and the effective diffusion coefficient Deff (t) also become
periodic functions for large t . We then may define corresponding quantities averaged over one
period of the driving,

v̄ = 1

T

∫ T

0
dt v(t) and D̄eff = 1

T

∫ T

0
dt Deff (t). (2)

The averaged velocity and diffusion coefficient are used to determine the dimensionless Péclet
number

Pe = Lv̄

D̄eff

which is best suited to characterize the regularity of the process. The higher the Péclet number
the more regular is the motion independent of the step width or timescale. The Péclet number
can be interpreted as the number of steps until the motion becomes randomized over one step
length.

Let us briefly discuss the behaviour of the undriven model. Without driving the initiation
of a step happens with a time independent rate γ = const. The stepping times then constitute
a stationary renewal process, because the intervals between subsequent steps are independent
of each other. These times between two subsequent steps are distributed according to

wtot(τ ) = (winit ◦ wstroke)(τ ) =
∫ τ

0
dτ ′ winit(τ

′)wstroke(τ − τ ′).

Therein winit(τ ) = γ exp(−γ τ) is the distribution of initiation times while wstroke(τ ) = w(τ)

is the distribution of stroke times. Introducing the mean and the variance of the step time

〈τ 〉 =
∫ ∞

0
dτ τwtot(τ ) and var τ =

∫ ∞

0
dτ τ 2wtot(τ ) − 〈τ 〉2

the mean velocity and effective diffusion coefficient can be expressed as [13]

v̄ = L
〈τ 〉 and D̄eff = L2

2

var τ

〈τ 〉3
.

This leads to the Péclet number

Pe = 2
〈τ 〉2

var τ
. (3)

In our further calculations we take the stroke time to be distributed according to a �-
distribution.

wstroke(τ ) ≡ wn,T (τ ) = 1

�(n)

(τn

T

)n exp(− τn
T )

τ
. (4)

In figure 2 this waiting time distribution is illustrated for different values of n, which
parametrizes different cases, ranging from an exponential distribution for n = 1 pertinent
to a single rate process to a delta distribution for n → ∞ corresponding to a fixed non-random
stroke time. In particular, the mean stroke time is

〈τstroke〉 :=
∫ ∞

0
dτ τwn,T (τ ) = T
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Figure 2. The gamma distribution equation (4) with mean T = 1 and two different values of n.
The plots are non-normalized, but scaled such that the maximum value is unity.
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Figure 3. 20 different realizations of the number of steps as a function of time for different
parameter sets. Left: highly ordered motion corresponding to large Péclet number (γ = 1, T = 10
and n = 1009). The middle and right figures show less coherent motion with small Péclet numbers
for a fast (middle) and a slow stepper. (Middle: γ = 1, T = 1 and n = 1. Right: γ = 0.1, T = 10
and n = 1.)

while its variance reads

var τstroke :=
∫ ∞

0
dτ τ 2wn,T (τ ) − 〈τstroke〉2 = T 2

n
.

Both can be varied independently by appropriately choosing T and n. With this stroke time
distribution the Péclet number equation (3) of the undriven Brownian stepper can be expressed
as (see also [9])

Pe = 2
( 1

γ
+ T )2

1
γ 2 + T 2

n

. (5)

To illustrate the correspondence between Péclet number and regularity we have plotted in
figure 3 20 different realizations of the number of steps as a function of time for three parameter
sets, one with a high Péclet number and two with a low Péclet number.

In the following we will fix the value of T = 5 and use in examples n = 100 and 1000.
Then in the undriven case Pe from equation (5) ranges between 2 and 200 for n = 100 and
2000 for n = 1000 if γ increases from zero to infinity. Later on, for the driven case we will
find values which exceed these values by several orders of magnitude.
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3. Theory

In [11, 12] a method was presented to evaluate the mean frequency and effective diffusion
coefficient as defined by equations (1) in the asymptotic limit for periodically driven renewal
processes. Such a periodic renewal process is defined by a time dependent waiting time
distribution w(τ, t) which governs the time τ between two subsequent steps, if the previous
step happened at time t . Due to the periodic driving the dependence on this time t is also
periodic with the period T = 2π

�
of the periodic driving. In the case of the Brownian stepper

model considered here, this time dependent waiting time distribution is given by the convolution
of the time dependent activation time distribution and the stroke time distribution.

In what follows we briefly review the main ideas of this approach. Readers who are
interested in the details of the calculation are referred to [12].

Let pk(t) be the probability to have made k steps until time t and jk(t) the probability
density to make the kth step at time t . In the asymptotic limit these quantities obey the equations

pk(t) =
∫ ∞

0
dτ jk−1(t − τ )z(τ, t − τ ) (6)

and

jk(t) =
∫ ∞

0
dτ jk−1(t − τ )w(τ, t − τ ) (7)

where z(τ, t) = 1 − ∫ τ

0 dτ ′ w(τ ′, t) is the probability to wait longer than τ until the next step,
provided the last step happened at t . This discrete microscopic dynamics can be embedded into
a continuous envelope dynamics, governed by the probability density P(x, t), by assigning

pk(t) = 1

L

∫ k+ L
2

k− L
2

dx P(x, t). and jk(t) = J
(

k +
L
2

, t

)
, (8)

where J is the probability current of the continuous embedding as defined by the continuity
equation

∂

∂ t
P(x, t) = − ∂

∂x
J (x, t). (9)

Assuming the envelope dynamics to be governed by the Kramers–Moyal equation

∂

∂ t
P(x, t) =

∞∑
n=1

(−1)n

n!
κ(n)(t)

∂n

∂xn
P(x, t) (10)

one eventually deduces from the asymptotic equality of the instantaneous mean velocity and
effective diffusion coefficient in both the discrete description and its continuous embedding
the relation

κ(1)(t) = v(t) and κ(2)(t) = 2Deff(t).

Next the ansatz (8) is inserted into the microscopic dynamics,expressing the probability current
J in terms of the probability distribution P according to equations (9) and (10) as

J (x, t) =
∞∑

n=1

(−1)n

n!
κ(n)(t)

∂n−1

∂xn−1
P(x, t). (11)

The resulting terms P(k − L
2 , t −τ ) can be expressed in terms of ∂n

∂xn P(x, t)|x=k by performing
a Taylor expansion and replacing the resulting time derivatives according to equation (10) by
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derivatives with respect to x . Equating the coefficients of P(k, t) and ∂
∂x P(x, t)|x=k one

eventually arrives at∫ ∞

0
dτ v(t − τ )z(τ, t − τ ) = L (12)

∫ ∞

0
dτ Deff (t − τ )z(τ, t − τ ) = 2

∫ ∞

0
dτ v(t − τ )

∫ τ

0
dτ ′ v(t − τ ′)z(τ, t − τ ) − L2. (13)

In [11, 12] also the special case of a periodically driven renewal process was considered,
where the time intervals between subsequent events are governed by a rate process with a
periodically time dependent rateγ (t) followed by a waiting time,which is distributed according
to some waiting time density w(τ). This is exactly the situation we face in our model for the
Brownian stepper. Denoting by z(τ ) = 1 − ∫ τ

0 dτ ′ w(τ) the probability that a stroke will take
longer than τ , equations (12) and (13) can be further simplified. This eventually leads to [12]

v(t) + γ (t)
∫ ∞

0
dτ v(t − τ )z(τ ) = Lγ (t) (14)

and

Deff (t) + γ (t)
∫ ∞

0
dτ Deff(t − τ )z(τ )

= − L2

2
γ (t) + Lv(t) + γ (t)

∫ ∞

0
dτ v(t − τ )

∫ τ

0
dτ ′ v(t − τ ′)z(τ ). (15)

The periodic solutions of the inhomogenous linear integral equations (14) and (15) can be
numerically obtained in Fourier space using a linear solver like LAPACK. From the periodic
instantaneous mean velocity v(t) and instantaneous effective diffusion coefficient Deff(t), the
desired mean velocity v̄ and effective diffusion coefficient D̄eff are obtained by performing a
period average according to equations (2).

4. Results

To present specific results we consider two types of periodic driving, namely a dichotomic
activation rate

γd(t) =
{

r1 if t ∈ [nT , (n + 1
2 )T )

r2 if t ∈ [(n + 1
2 )T , (n + 1)T )

(16)

where T is the period of the modulation and a harmonic driving

γh(t) = r1 + r2

2
+

r1 − r2

2
cos �t . (17)

First let us consider a situation where the periodic driving (16) induces a change in the
attachment rates γ by one order of magnitude. i.e. r2/r1 = 10. Figure 4 shows results of the
theory presented in the previous section according to equations (14) and (15) and compares
them with mean velocities v̄ and diffusion coefficients D̄eff obtained from simulations of
an ensemble of 100 000 Brownian steppers. Both curves agree within simulation precision.
Deviations occur due to finite simulation times.

The mean velocity exhibits a 1:1 synchronization with the periodic driving near � ≈ 1. In
the region of synchronization the diffusion coefficient becomes minimal. The steppers follow
the periodic driving with high precision.

A second synchronization window appears for smaller frequencies, i.e. for longer periods.
During half of the period when the excitation rate γ (t) is large the stepper succeeds in
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Figure 4. Mean frequency v̄ (solid line and +) and effective diffusion coefficient D̄eff (dashed line
and ×) of the dichotomically driven model with r1 = 0.1, r2 = 1.0, T = 5.0 and n = 20. The
step length L is chosen to be 1. Symbols are simulations of the driven renewal process, while the
lines correspond to the theory equations (14) and (15).

performing two steps. Again the diffusion coefficients become smaller compared to regions
without synchronization.

Figure 4 also allows the discussion of the limits of fast driving � → ∞ and slow driving
� → 0. In the case of fast driving the averaged velocity and diffusion coefficient of the steppers
coincide with the values of the undriven case if γ (t) is replaced by the arithmetic mean of the
rate. i.e. γ (t) → (r1 + r2)/2. Conversely, if the switching frequency is vanishingly small one
can average between the two velocities and diffusion coefficients of the undriven situations.
Therefore, the mean velocity becomes v = (v1 + v2)/2, where v1 is its stationary value with
rate r1, respectively v2 and r2. The limiting values of the effective diffusion coefficient can be
obtained in the same way.

In order to amplify synchronization we increase the difference of the two fuel attachment
rates and decrease the variance of the stroke time. We now put the ratio r2/r1 = 100. Figure 5
shows again the dependence of the mean velocity, effective diffusion coefficient and Péclet
number on the driving frequency in the case of dichotomic driving (16) for these rates.

We observe different regions of frequency synchronization. These regions show a rational
relation between driving frequency and step frequency which is proportional to the velocity.
The frequency locking is accompanied by a low effective diffusion. This leads to a high Péclet
number, thus in these regions the motion of the molecular motor is very regular. Between these
regions the effective diffusion coefficient strongly increases, showing a less coherent motion
of the motor.

The behaviour of the harmonically driven motor (17) is qualitatively the same as the
behaviour of the dichotomic (16) motor. Again, we obtain very high Péclet numbers with
locked velocity and low diffusion if the motion of the stepper is synchronized with the periodic
drive. However, as seen in (figure 6), the harmonic driving allows a more precise tuning of
the driven motor, since the stepper also exhibits a 3:2 synchronization regime, i.e. three steps
of the motor lie within two periods of the driving. Such behaviour was not observed for the
dichotomically driven system.
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Figure 5. Mean velocity (top), effective diffusion coefficient (middle) and Péclet number (bottom)
as a function of driving frequency of the dichotomically driven system. Two situations with different
dispersions of the stroke times are shown. Parameters: r1 = 0.1, r2 = 10.0, T = 5.0, n = 100
(solid line); r1 = 0.1, r2 = 10.0, T = 5.0, n = 1000 (dashed line). The corresponding
two values for the undriven system with initiation rate γ = r1 +r2

2 are v̄ ≈ 0.192 (0.192),
D̄eff ≈ 0.001 (0.000 23) and Pe = 93 (416) (values in parentheses: second parameter set).
The additional curves in the top figure indicate perfect synchronization between the motion of the
stepper and the periodic drive; the corresponding ratios are shown in the key.

In the high frequency limit both driving types lead to the same behaviour; however, for
low frequencies the velocity in the harmonically driven system is higher, while the effective
diffusion coefficient is much lower, leading to an increased Péclet number compared to the
dichotomically driven system.

Next let us compare the periodically driven system in the presence and in the absence
of synchronization with the corresponding undriven system (see figures 7). To this end we
have chosen the excitation rate of the undriven system between the maximum rate r2 and the
minimum rate r1 of the driven system, such that the motion is most regular, i.e. the Péclet
number is maximal. This optimal value ropt is depicted in both figures (dashed lines). The
Péclet numbers for the driven system and the undriven system are shown as a function of
the variance of the stroke time for two different driving frequencies, one lying within the 1:1
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Figure 6. Mean velocity (top), effective diffusion coefficient (middle) and Péclet number (bottom)
as a function of driving frequency for the harmonically driven system. Two situations with different
dispersions of the stroke times. Parameters: r1 = 0.1, r2 = 10.0, T = 5.0, n = 100 (solid line);
r1 = 0.1, r2 = 10.0, T = 5.0, n = 1000 (dashed line). The additional curves in the top figure
indicate perfect synchronization between the motion of the stepper and the periodic drive, the
corresponding ratios are shown in the key.

synchronization regime and the other in a region without synchronization. We see that in
the case of synchronization the coherence of motion can be significantly increased. Out of
synchrony the periodic drive reduces the level of the regularity of the motion. For smaller
values of the stroke time variance the optimal rate is the maximal rate ropt = r2. In the
undriven case a quick attachment of fuel molecules and small variances of stroke times result
in a nearly periodic motion. If this situation is perturbed periodically by changing to a smaller
rate r1 � ropt much disorder is added to the motion, since while remaining in the state with
small rate the dispersion is ∝1/r1. This leads to the significant decrease of the Péclet number
out of synchrony.

The periodic drive might be an instrument for probing the characteristic times of the
configurational change. In case of a significant periodic variation of fuel attachment rate
γ (t) the synchronization between the motor and the periodic driving, as indicated by a high
Péclet number, is observed for driving frequencies that are equal to or slightly less than integer
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Figure 7. Comparison between the Péclet numbers of the dichotomically driven (solid line) and
the undriven system (+) as a function of the relative variance of the stroke time var τstroke

〈τstroke〉2 = 1
n . Top:

1:1 synchronization regime. Parameters: r1 = 0.1, r2 = 10.0, T = 5.0, ω = 1.1. Bottom: out of
synchronization. Parameters: r1 = 0.1, r2 = 10.0, T = 5.0, ω = 0.8. The rate for the undriven
system is chosen between r1 and r2 such that the Péclet number is maximized. This optimal rate
ropt is indicated by the dashed line.

multiples of 2π times the mean stroke time T of the motor. Thus by tuning the driving
frequency and measuring the Péclet number one can deduce the mean stroke time T . This
is presented in figure 8 where the bright regions indicate high Péclet numbers as a function
of the frequency of the periodic drive � and the mean stroke time T . One sees immediately
the several regions of n:m synchronization which might be used to determine the mean stroke
time. Both types of driving, i.e. dichotomic (left) and harmonic (right), exhibit qualitatively
the same behaviour. Again, the harmonic drive allows a finer tuning of the stepper.

5. Conclusion

We have shown that the periodic driving, being dichotomic or harmonic, may regularize
the motion of the molecular motor. For this purpose we have studied a unidirectionally
moving Brownian stepper. Its single step consists of an exponentially distributed waiting
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Figure 8. Péclet number as a function of driving frequency � and mean stroke time T for the
dichotomically (left) and harmonically driven (right) model with r1 = 0.1, r2 = 10 and n = 100.
The solid line correspond to � = 2π/T , � = 4π/T and � = 6π/T . The synchronization regions
as indicated by highest Péclet number may thus be used to determine the mean stroke time T .

time for the attachment of fuel molecules and a second gamma-distributed time modelling
the configurational change performing the forward motion. We have assumed that the
attachment rate of the fuel molecules is periodically varied by a periodic modulation of the
fuel concentration.

The coherence of the motion is measured by the Péclet number. It gives the number of steps
until fluctuations smear out the position of the stepper over one step length. Maximal Péclet
numbers were found if the motor synchronizes to the periodic drive. Several regions of n:m
synchronizations with locked velocity and small effective diffusion were found. Conversely,
out of synchrony the stepper performs more disordered motion compared with the stationary
undriven case where the attachment rate is optimized to yield maximal Péclet numbers. We
have further shown that periodic driving can be used to work out parameters of the Brownian
stepper like the mean stroke time.

We believe that more complex models than the Brownian stepper can be synchronized to
high Péclet numbers as well. Therefore, the proposed periodic driving of molecular motors
might be a new technique for improvement and regularization of the random motion.
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